Plant cytogenomics in the post-genomics era

The release of the first human reference genome in 2003 marked the beginning of the post-genomics era when genetics progressed beyond gene-centered analyses to a myriad of omics approaches. Genome sequencing technologies have advanced dramatically from Sanger, second/next-generation, to third-generation sequencing platforms. Also, genome assembly methods and tools have evolved contemporaneously, resulting in a dramatic drop in genome assembly cost. Consequently, more than 360 plant species’ genomes have been assembled ever since the first plant genome, Arabidopsis thaliana, was published in 2000.

“Oh, my Genes”: Lessons from Plant Genetics and Genomics for Trait Improvement

In recent years, genetics and genomics has played an important role in facilitating the genetic improvement of plants. Different tools have been developed to examine the structure, function, and properties of genes controlling complex traits. The genetic diversity of germplasm found in existing gene banks through different breeding populations such as core collections, nested association mapping panels, mutants, recombinant inbred lines, and multiparent advance generation intercross populations in germplasm banks served as sources of desirable alleles for plant breeding.

hayde_galvez

Hayde F. Galvez, PhD

PhD, Molecular Genetics and Plant Breeding
Assistant Professor and Head, Genetics Laboratory
Institute of Plant Breeding-Crop Science Cluster
College of Agriculture, University of the Philippines Los Baños

Research Areas: plant molecular genetics/genomics studies for crop improvement and germplasm management application; basic S&T research studies towards the development of molecular biotechnology technologies; and crop pre-breeding employing advancements in genomics and computational biology.