
Kinetic Separation: 
a conceptual platform for development of 

solution-based kinetic affinity methods
(an Analytical Swiss Army Knife)



Part 1
Affinity methods and 

Kinetic Separation in their context



Affinity interactions: Specific strong reversible binding of molecules

Ligand Ligand

1. Reversible binding drives regulatory 
processes in biology

Signal transduction

Gene expression

    
eq eqon on off

d
off off eq on

[T] [L]
Target + Ligand Complex     or      T + L C         

[C]
k k

k k

kK
k

- Kd has been typically used to rank drug leads 
- Drugs with the same Kd but different kon and koff may have different efficacies
- It is important to know kon and koff

2. Modern drugs are develop to 
reversibly bind their therapeutic targets

Drug Discovery Today 2013 ,18 , 456

Fu
nc

tio
na

l e
ffi

ca
cy

 o
f a

 s
er

ie
s 

of
 a

go
ni

st
s 

of
 th

e 
A

2A
 

ad
en

os
in

e 
re

ce
pt

or
 (%

)

Log [koff
-1(min)]

Su
rv

iv
al

 o
f i

nf
ec

te
d 

m
ic

e 
w

ith
 u

po
n 

tr
ea

tm
en

t w
ith

 
ba

ct
er

ia
l g

ro
w

th
 in

hi
bi

to
rs

 (%
)

koff
-1(min)

Kd (nM)
ACS Chem Biol 2009, 4, 221

In
hi

bi
tio

n 
of

 c
el

l p
ro

lif
er

at
io

n 
up

on
 tr

ea
tm

en
t w

ith
 

ce
ll-

gr
ow

th
 in

hi
bi

tin
g 

pe
pt

id
es

 (%
)

koff
-1(min)

Kd (µM)
Nature Rev | Drug Discovery 2007, 5, 730Nucleus

kon

koff

Protein
Drug



Our goal is to develop a multi-faceted approach which facilitates three 
applications:

- Finding kon, koff, Kd
- Quantitative detection
- Selection of affinity probes and drug candidates

based on:
1. Single concept 2. Single instrument      3. Single mathematics

Affinity methods

Quantitative detection using affinity probes
- Immunoassays (mainly for proteins)
- Hybridization assays (for DNA and RNA)

Selection of affinity probes and drug 
candidates from complex mixtures
- Affinity chromatography
- Filtration

Limitation of conventional affinity methods:
1. Different concepts 2. Different instruments      3. Different mathematics

Finding Kd, kon, koff

- Calorimetry (Kd only)

- Optical methods:
 surface plasmon resonance 

 biolayer interferometry



Definition: Kinetic Separation is separation of interacting species in a narrow tube 
without immobilization of T or L
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Two major processes
1. Reversible binding of T to L
2. Migration of T, L, and C with different velocities
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Mass transfer is described by a system of differential equations:

Our approach: Kinetic Separation

- Qualitatively unique sets of initial and boundary conditions define different methods of Kinetic Separation

- Equilibrium Mixture =

kon and koff can be found by solving these equations for experimental [L](t) 
and known velocities
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Schematic representation of initial and boundary conditions in 
Kinetic Separation
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Separation and detection approaches suitable 
for Kinetic Analysis

1. Different velocities of L and C (and T): vL ≠ vC ≠ vT
2. Negligible influence of separation on kon and koff

Requirements:

Available approaches:
1. Affinity chromatography
2. Reversed phase chromatography
3. Ion exchange chromatography
4. Capillary electrophoresis
5. Sedimentation
6. Size exclusion chromatography

Separation

Available approaches:
1. Affinity chromatography (affects kon and koff)
2. Reversed phase chromatography (affects kon and koff)
3. Ion exchange chromatography (affects kon and koff)
4. Capillary electrophoresis (electric field)
5. Sedimentation (different gravity)
6. Size exclusion chromatography (different path-lengths for molecules of different sizes)

Suitable approaches:
1. Affinity chromatography (affects kon and koff)
2. Reversed phase chromatography (affects kon and koff)
3. Ion exchange chromatography (affects kon and koff)
4. Kinetic Capillary Electrophoresis (KCE)
5. Sedimentation (different gravity)
6. Kinetic Size-Exclusion Chromatography (KSEC)

Available approaches:
1. Fluorescence labeling
2. Label-free optical detection
3. Mass Spectrometry (MS)

Detection
1. Negligible influence of detection on kon and koff
2. nM sensitivity for studying complexes with nM Kd values

Requirements:

Suitable approaches:
1. Fluorescence labeling (can affect kon and koff of protein-small molecule binding)
2. Label-free optical detection (low sensitivity)
3. Mass Spectrometry (MS)
There are 4 practical kinetic separation options: 

KCE-Fluor. and KSEC-Fluor.
KCE-MS and KSEC-MS



Proven applications of Kinetic Separation
1. Finding kon, koff, and Kd for protein-ligand binding
2. Finding H and S of protein-ligand binding
3. Affinity analyses of proteins using DNA aptamers as affinity probes
4. Selection of “smart” ligands (ligands with desirable range of koff or Kd) 
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Subject of this lecture is application of a single Kinetic Separation method to:
(i) selection of ligands from combinatorial libraries
(ii) kinetic characterization of target-ligand binding
(iii) calibration-free affinity analysis of target using ligand as affinity probe
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All developed methods have been fully documented and published or patented for end users



Part 2
Conceptual explanation of one Kinetic 
Separation method and its applications

Run
buffer

Run
buffer

Inlet
reservoir

Run buffer
Capillary

EM

Outlet
reservoirD

et
ec

to
r

EM = Leq + TeqCeq+ eq eq
d

eq

L[ ] [ ]
[

T
C]

K 



Migration of zones in Kinetic Separation

Position in the column
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L C T
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Concept of Kinetic-Separation-based selection of naive ligands

Position in the capillarity
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Concept of Kinetic-Separation-based selection of smart 
ligands with desirable koff
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Concept of Kinetic-Separation-based 
(i) determination of koff and kon and 
(ii) calibration-free quantitative analysis of T
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AL

Migration time to the detector
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from C
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Adiss
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formed by decay of C

- No simplifying assumptions can be made for finding kon and koff or [T]0
- Fitting an experimental concentration profile by a simulated one is required to find kon and koff or 

find [T]0 for known kon and koff

TL

T

Concept of Kinetic Separation-based
(i) determination of koff and kon and 
(ii) calibration-free quantitative analysis of T

Case 2: T is not separated from C  the presence of T in the zone of C results in re-binding of L 
(formed from the decay of C) to the excess of T



Part 3
Examples of applications of Kinetic Capillary 
Electrophoresis (KCE) with optical detection
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+
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Schematic of a Capillary Electrophoresis (CE) instrument



Application 1
Selection of DNA aptamers by KCE

Partitioning
Separation of target-
binding DNA from 

unbound DNA library
by an affinity method

Amplification
PCR amplification 
of selected target-

binding DNA to obtain 
the  enriched library

N rounds

- Conventional SELEX uses partitioning on surfaces, e.g. on filters
- Background of partitioning is typically 1-10%
- Required number of rounds of selection is typically more than 10
- Smart aptamers (e.g. with pre-defined koff or Kd) are hard to obtain

SELEX
Selection of binding ligands from a ssDNA library 
with starting sequence diversity of 1012-1015

priming
region 1

priming
region 2

random
region

~20 nt ~40 nt ~20 nt

Binding
The library 

is mixed with 
the target and 

incubated



Advantage of KCE-based partitioning is exceptionally low background
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Example 1:
One-step selection of naive aptamers to farnesyltransferase
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Example 2: 
Selection of smart aptamers with pre-defined koff for MutS protein
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Application 2
KCE-based selection of drug leads from libraries of 

DNA-encoded small molecules
(current work in collaboration with GlaxoSmithKline)

DNA tag encoding the small molecule

Linker
Small 

molecule

n steps

Library DNA-tagged
ligands

Decoding
ligands

by qPCR

KCE-based
partitioning

Structural Diversity > 109

High efficiency of KCE-based partitioning is attractive for selection of binding 
ligands from libraries of DNA-encoded small molecules 
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Application 3
KCE-based determination of and koff and kon of protein-DNA binding

Perfect exponential
decay

Ligand is fluorescently labeled DNA
Target is unlabeled SSB protein
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Application 4
KCE-based calibration-free analysis of MutS protein with ultra-wide dynamic range

3 Smart Aptamers with Kd of 7.6, 46, and 810 nM were used
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Part 4
Examples of applications of Kinetic Size-Exclusion 

Chromatography (KSEC) with MS detection

Instrumentation for KSEC-MS

Separation of L from C on a SEC column by HPLC MS detection of signal proportional to [L]



Application 1
Determination of kon and koff for binding of a protein to a small-molecule drug
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Fitting an experimental signal from L by a simulated one is required to find kon and koff



Small molecule detection and determination of kon and koff

Non-linear regression with 
computer-simulated 

migration pattern

Bound L

L dissociated from C

Free L



Example 1:
Interaction between dihydrofolate reductase (DHFR) and Methothrixate (MTX)

KSEC-MS global fitting:
kon = (60.8 ± 6.3)  104 M1s1

koff = (5.6 ± 1.3)  103 s1

Kd = (9.1 ± 1.4)  109 M
ITC: Kd = (10.2 ± 0.8)  109 M
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KSEC global fitting
kon = (15.4± 2.2)  104 M1s1

koff = (17.8 ± 2.0)  103 s1

Kd = (116.9 ± 15.6)  109 M
ITC: Kd = (76.4 ± 5.3)  109 M

Example 2 
Interaction between carbonic anhydrase (CA) and acetazolamide (ACZ)
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Conclusions
Kinetic Separation is an “Analytical Swiss Army Knife”

Science is always wrong. It never solves a problem without creating 
ten more!

George Bernard Shaw

1. Interfacing CE with MS for Kinetic Separation
2. Development of Kinetic Separation tools for studying protein-protein binding 
3. Development of Kinetic Separation tools for studying binding stoichiometry
4. Development of Kinetic Separation for studying kinetics of assembly/disassembly of complex 

molecular machines
5. Finding solutions for Kinetic Separation with physiological run buffers
6. Expanding Kinetic Separation to new other separation modes (e.g. ultracentrifugation)

More problems
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