Kinetic Separation:
a conceptual platform for development of

solution-based kinetic affinity methods
(an Analytical Swiss Army Knife)




Part 1
Affinity methods and
Kinetic Separation in their context



Affinity interactions: Specific strong reversible binding of molecules

T]og[L
Target + Ligand k°<:>” Complex or T+ L<k°:>”C Kdz[ legllleq Ko
Koff Koff [ C] eq kon
1. Reversible binding drives regulatory 2. Modern drugs are develop to oo
processes in biology reversibly bind their therapeutic targets \ -\

- K, has been typically used to rank drug leads
- Drugs with the same K but different k,,, and k4 may have different efficacies
- It is important to know Kk, and K«
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Affinity methods

——S—.

«

Finding Ky, K, Ko
- Calorimetry (K, only)

Quantitative detection using affinity probes

- Immunoassays (mainly for proteins)
- Hybridization assays (for DNA and RNA)

- Optical methods:

e surface plasmon resonance Selection of affinity probes and drug

candidates from complex mixtures

e biolayer interferometry  * ﬂgg =] - Affinity chromatography
- - Filtration

Limitation of conventional affinity methods:
1. Different concepts 2. Different instruments 3. Different mathematics

Qur goal is to develop a multi-faceted approach which facilitates three

applications:

- Finding k,,,, Ko K

- Quantitative detection

- Selection of affinity probes and drug candidates
based on:

1. Single concept 2. Single instrument 3. Single mathematics




Our approach: Kinetic Separation

Definition: Kinetic Separation is separation of interacting species in a narrow tube
without immobilization of T or L

V| # Vg Two major processes
Direction of : .
T4l e s force field 1. Reversible binding of T to L
Kot . 2. Migration of T, L, and C with different velocities
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Mass transfer is described by a system of differential equations:
o, aIml

ot Vi 8—x - _kon [T][L] + koff[C]
B[L] oIL] K.n @nd K g can bg.found by solving these equations for experimental [L](t)
— TV = KT+ K, [C1 - and known velocities
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- Qualitatively unique sets of initial and boundary conditions define different methods of Kinetic Separation




Schematic representation of initial and boundary conditions in
Kinetic Separation
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Separation and detection approaches suitable
for Kinetic Analysis

Separation

Requirements: 1. Different velocities of L and C LV # Ve
2. Negligible influence of separation on k., and K
Suitable approaches:

1+-Affinity-ehromategraphy (affects k , and K¢)
. Reversed-phase-chromategraphy (affects k,,, and K )

lon exchange chromatography (affects k_, and Kos)
Kinetic Capillary Electrophoresis (KCE)

Sedimentation (different gravity)
Kinetic Size-Exclusion Chromatography (KSEC)

Detection

Requirements: 1. Negligible influence of detection on k., and K
2. nM sensitivity for studying complexes with nM K, values

Suitable approaches:
1. Fluorescence labeling (can affect k_, and k4 of protein-small molecule binding)

2-Label-free-optical-detection (low sensitivity)
3. Mass Spectrometry (MS)

There are 4 practical kinetic separation options:
KCE-Fluor. and KSEC-Fluor.
KCE-MS and KSEC-MS
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Proven applications of Kinetic Separation

1. Finding Kk, k¢, and K, for protein-ligand binding

2. Finding AH and AS of protein-ligand binding

3. Affinity analyses of proteins using DNA aptamers as affinity probes

4. Selection of “smart” ligands (ligands with desirable range of k& or K,)

All developed methods have been fully documented and published or patented for end users
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Subject of this lecture is application of a single Kinetic Separation method to: .

(i)  selection of ligands from combinatorial libraries nlet S Outiet
. . . . . . . . . @ .
(i)  kinetic characterization of target-ligand binding reservoir Qreservoir
(iii) calibration-free affinity analysis of target using ligand as affinity probe ~un Capillary * o
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Part 2

Conceptual explanation of one Kinetic
Separation method and its applications
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Concentration

Concentration

Migration of zones in Kinetic Separation
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Concept of Kinetic-Separation-based selection of naive ligands
EM = Combinatorial Library of ligands + Target (T)
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Concept of Kinetic-Separation-based selection of smart
ligands with desirable k¢
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Concept of Kinetic-Separation-based
(i) determination of k_; and k,, and
(i) calibration-free quantitative analysis of T
Case 1: the 3 zones are separated = we can assume that there is no rebinding of T and L

formed by the decay of C
A L

T is not
spectroscopically L dissociated
visible

Signal (proportional
to concentration)
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C
Migration time to the detector
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Concept of Kinetic Separation-based
() determination of k¢ and k,, and
(i) calibration-free quantitative analysis of T
Case 2: T is not separated from C = the presence of T in the zone of C results in re-binding of L
(formed from the decay of C) to the excess of T

>

<—— Total T including
formed by decay of C

Signal (proportional
to concentration)

Migration time to the detector

- No simplifying assumptions can be made for finding k,,, and k¢ or [T],

- Fitting an experimental concentration profile by a simulated one is required to find k_,, and k_x or
find [T], for known k_, and k



Part 3
Examples of applications of Kinetic Capillary
Electrophoresis (KCE) with optical detection

Schematic of a Capillary Electrophoresis (CE) instrument

Capillary ——

f N Detector

| 2 »M&

Light Source

| —
o Running Buffer R

Inlet Outlet

High Voltage
n g g —




Application 1
Selection of DNA aptamers by KCE

_ o , , rimin rimin
Selection of binding ligands from a ssDNA library fegiong1 ;23%? ,?egiongz
with starting sequence diversity of 1012-1075 0t =0 =50 i
Binding Partitioning Amplification
The library Separation of target- PCR amplification
is mixed with ~ binding DNA from > of selected target-
the target and unbound DNA library binding DNA to obtain
incubated by an affinity method the enriched library
N rounds

- Conventional SELEX uses partitioning on surfaces, e.g. on filters
- Background of partitioning is typically 1-10%

- Required number of rounds of selection is typically more than 10
- Smart aptamers (e.g. with pre-defined k «or K,) are hard to obtain



Advantage of KCE-based partitioning is exceptionally low background

Schematic

Experiment
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Background is the relative amount of DNA
in the aptamer collection window without
target protein

For KCE: Background < 0.001%

For other methods: Background > 0.1%



Absorption, 280 nm (a.u.) Absorption, 280 nm (a.u.)
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Example 1:
One-step selection of naive aptamers to farnesyltransferase
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Example 2:
Selection of smart aptamers with pre-defined k4 for MutS protein

3
C_Cg 0.6 7
@ | Theoretical ko x 103, s
3 Region | Region |I
2% 0 - 11 1.8 — 2.6
S DNA
T library
015 tC | 2'0 | | | | | | | | | 36 |
Migration time at the end of capillary, min
Kot Kot Ky
(theoretical), | (experimental), | (experimental),
x10°s* x10°s* nM
Region | 0-1.05 0.4 11
Region I 1.76-2.64 1.7 44




Application 2
KCE-based selection of drug leads from libraries of

DNA-encoded small molecules
(current work in collaboration with GlaxoSmithKline)

High efficiency of KCE-based partitioning is attractive for selection of binding
ligands from libraries of DNA-encoded small molecules

Small DNA tag encoding the small molecule
molecule Linker Structural Diversity > 10°

KCE-based DNA-tagged Decoding
partitioning igands | ]  llgands
by gPCR

n steps



Application 3
KCE-based determination of and k_ and k,, of protein-DNA binding

Ligand is fluorescently labeled DNA Free protein is undetectable
Target is unlabeled SSB protein }‘ P
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Application 4

KCE-based calibration-free analysis of MutS protein with ultra-wide dynamic range
3 Smart Aptamers with K, of 7.6, 46, and 810 nM were used

3 Individual aptamers A mixture of 3 aptamers
— - 1.0

RN
o
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[T], is found by solving the following algebraic equation for n aptamers (L):
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Part 4
Examples of applications of Kinetic Size-Exclusion
Chromatography (KSEC) with MS detection

Instrumentation for KSEC-MS

Separation of L from C on a SEC column by HPLC MS detection of signal proportional to [L]




Application 1

Determination of k_,, and k« for binding of a protein to a small-molecule drug

>
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L dissociatec

Signal
(proportional to concentration)

Migration time to the detector

Fitting an experimental signal from L by a simulated one is required to find k_, and k



Small molecule detection and determination of k_, and k_
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Example 1.

Interaction between dihydrofolate reductase (DHFR) and Methothrixate (MTX)

>

MTX intensity (cps)

O

MTX intensity (cps)

8E+3

6E+3

4E+3

2E+3

OE+0

3E+4

2E+4

2E+4

8E+3

OE+0

Ky, = (62.9 + 2.0) x 104 M-1s-1
Koit = (56.7 £ 7.6) x 104 571
Ky=(9+1)x10°M

20 nM DHFR

9 11 13 15 17
Retention time (min)

Ky, = (51.3 £4.1) x 104 M-1s-1
Kot = (39.0 £ 2.7) x 104 s1
Ky=(7.7+1.2)x 10°M

80 nM DHFR

9 11 13 15 17
Retention time (min)

o

MTX intensity (cps)

O

MTX intensity (cps)

8E+3

6E+3

4E+3

2E+3

OE+0

2E+4

2E+4

1E+4

6E+3

OE+0

Ky, = (57.5 + 4.5) x 10* M-ls-
Kois = (46.0 + 3.6) x 104 571
i} Ky=(8.0%1.7)x 10°M

50 nM DHFR

7 9 11 13 15 17
Retention time (min)

Control

No DHFR

JU

7 9 11 13 15 17
Retention time (min)

it

-0.05

-0.10+

pcal/sec

-0.15+

lllll

0.00.51.01.5 2.0
Molar Ratio

10 20 30 40 50 60
Time (min)

-0.201

kcal mol” of injectant
Nbbo

KSEC-MS global fitting:
K,, = (60.8 £ 6.3) x 10* M~1s"
Ky = (5.6 £1.3) x 103 s
Kq=(9.1£14)x10°M

ITC: K;=(10.2+£0.8) x 10° M



Example 2

Interaction between carbonic anhydrase (CA) and acetazolamide (ACZ2)
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Conclusions

Kinetic Separation is an “Analytical Swiss Army Knife”

%

Science iIs always wrong. It never solves a problem without creating

ten more!
George Bernard Shaw

More problems

Interfacing CE with MS for Kinetic Separation

Development of Kinetic Separation tools for studying protein-protein binding

Development of Kinetic Separation tools for studying binding stoichiometry

Development of Kinetic Separation for studying kinetics of assembly/disassembly of complex
molecular machines

Finding solutions for Kinetic Separation with physiological run buffers

Expanding Kinetic Separation to new other separation modes (e.g. ultracentrifugation)
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