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Where am I?
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My research interests

• Electron and energy transfer problems. 
• In quantum chemistry. 
• With an application to 

photosynthesis. 
• most of our application are in 

Materials. 
• Dynamical modeling in Biology.



Hierarchy  
in Biology 

A multi-cellular  
organism

Organs

Tissues

Cells

Organelles

Molecules

Building unitsAmino Acids 
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Proteins, DNAs, 
Lipids, Glycoses

A lot of work in 
Chemistry and Biology 
aim to understand the 
structure and function 

at molecular level. 

On the other hand,  
“systems” level of 

understanding based 
on molecular studies 

have started to 
emerge.



We are interested in

• Dynamic Description of Biological systems. 
• What is really going on in a living system? 

• How the desired outputs are generated. 
• What may be the factors that contribute 

to the special properties of such 
dynamics. 

• …



In the framework of biological 
observations

T. Ideker et al. Annu. Rev. Genomics Hum. Genet. (2001)



Dynamics in stochastic biological 
processes — “noisy cells”

Elowitz, 2002



Gene expression is “noisy”
inactive

active

Gene transitions randomly between  
active and inactive states 

Cell to cell variability in a 
population 

two genes (cfp, -green; yfp, -red) 
controlled by identical promoters, 
integrated at the same locus on 
homologous chromosomes. 

Science 304, 1811-1814 (2004)
Science 309, 2010-2013 (2009)



Today’s talk includes

1. Theoretical Development for fluctuation 
and dynamics in a cell. 

2. An account for gene expression noises. 
- for computer simulation. 

3. An application project in C. elegans 
development.



Genes express in bursts.  The  
production is noisy. 

© 2006 Nature Publishing Group 

 

foreign organic molecules from the cytoplasm14 (see Supplementary
Information). As the fluorescent product molecules are pumped to
the surrounding medium and rapidly diffuse away, the advantage of
enzymatic amplification is lost.
To circumvent the efflux problem, we trap cells in closed micro-

fluidic chambers, such that the fluorescent product expelled from the
cells can accumulate in the small volume of the chambers, recovering
the fluorescence signal due to enzymatic amplification. The fast
efflux rate and short mixing time of the fluorescent molecules in
the miniature chambers guarantee that the fluorescence signal
outside the cells accurately reflects the enzymatic activity inside.
The microfluidic device is made of a soft polymer, polydimethyl-
siloxane (PDMS), and consists of a flow layer that contains the cells
and a top control layer (Fig. 1a)15,16. Actuation of two adjacent valves
in the control layer forms an enclosure of dimensions
100 £ 100 £ 10 mm3 (100 pl) in which cells can be trapped and
cultured17,18 (Fig. 1c, d; see also Supplementary Fig. S1). The micro-
fluidic chip is mounted on an inverted fluorescence microscope and
translated by a motorized stage, allowing multiplexing of data
acquisition by repeatedly scanning the chambers. Typically, 100
chambers can be scanned within less than 2min. Fluorescence is
excited with a tightly focused laser beam (Fig. 1a) that does not
directly illuminate the cell, avoiding cellular autofluorescence and
photo-damage to the cell.
We first show the ability to detect single enzyme molecules using

this technique by injecting a diluted solution of purified b-gal
enzyme and 300 mM of the fluorogenic substrate fluorescein-di-b-
D-galactopyranoside (FDG) into the chambers19. Fluorescence sig-
nals from different chambers increase with time, and the slopes give
the rates of hydrolysis (Fig. 1e). The distribution of hydrolysis rates
measured in the different chambers shows quantized and evenly
spaced peaks (Fig. 1f). We attribute these discrete peaks to integer
numbers of b-gal molecules. The spacing between the peaks is
60 pMmin21, which gives a calibration for the rate of increase in
fluorescein concentration corresponding to one enzyme molecule in
a chamber.
Another challenge for using b-gal to monitor gene expression in

live cells is that the cell wall acts as a barrier for FDG influx. We
quantify this effect in E. coli by measuring the hydrolysis rate for live
cells compared to cells treated with chloroform, which completely
permeabilizes cell membrane (Supplementary Fig. S4a). The ratio of
hydrolysis rates between these two cases is defined as the permeability
ratio, and is measured to be R ¼ 13 at 300 mmFDG. To increase FDG
influx, we transformed E. coli cells with a plasmid conferring
ampicillin resistance and grew the cells in media with b-lactam
antibiotics (see Methods). Under these conditions, cell wall synthesis
is partially inhibited, making the cells more permeable to FDG,
as evident by a lower value of R ¼ 2 ^ 0.3 (Supplementary Fig. S4b).
In determining the number of enzyme molecules in live cells
below, R ¼ 2 is used as a correction factor to the in vitro calibration
(Fig. 1f).
We then monitored gene expression in live E. coli cells in real time.

b-gal is expressed from the lacZ gene on the chromosomal DNA,
which is under the control of the lac promoter. Cells are grown in
glucose-containing medium without inducer to exponential phase;
hence the expression level is highly repressed20. We observed abrupt
changes in hydrolysis rates in chambers with dividing cells, as shown
in Fig. 2a, b. These step-wise increases in the rates indicate the
stochastic burst-like expression of new b-gal molecules. We attribute
the bursts to stochastic and transient dissociation events of the Lac
repressor from the promoter, followed by transcription of mRNA,
which is then translated into a few copies of the reporter protein
before the mRNA is degraded.
The expression of proteins from a given gene can be characterized

by two key parameters: the average frequency of expression bursts per
cell cycle, a; and the average number of protein molecules per burst,
b. Under conditions of exponential growth in minimal medium, the

burst frequency for protein expression from the repressed E. coli lacZ
gene is measured to be a ¼ 0.11 ^ 0.03 bursts per cell cycle. The
average burst size is measured to be b ¼ 5 ^ 2 enzymes, or 20 ^ 8
monomers per burst, which is consistent with biochemical estimates
of 25–30 b-gal monomers per mRNA21,22.
This real-time assay also allows us to measure the distribution of

the number of enzymes produced per burst (Fig. 2c). It can be well
fitted with an exponential distribution, PðnÞ ¼ C expð2n=bÞ, where n
is the number of b-gal molecules per burst and C is a normalization
constant. We attribute this distribution to the fact that the cellular
lifetime of the mRNA is exponentially distributed21,23. Previously
only theoretically predicted1,24, the exponential P(n) can be
accounted for by the competition between mRNA degradation by

Figure 2 | Quantitative real-time measurement of individual protein
expression events in live E. coli cells. b-gal is under the control of a
repressed lac promoter. a, Trace of a chamber containing dividing cells
shows abrupt changes in hydrolysis rates (arrows on black curve). An empty
chamber shows a constant background (red curve). b, Discrete jumps in
b-gal number are due to burst-like production of proteins. The number of
b-gal molecules is calculated by taking the time derivative of the traces in a
and compensating for fluorescein photobleaching (Supplementary
Information). c, Histogram of copy number of b-gal molecules per burst.
The distribution is well-fitted with an exponential function (black line), with
an average of five proteins per burst, and is a consequence of exponential
cellular lifetime of the mRNA.
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L. Cai, N. Friedman and X. S. Xie
Nature 440, 358-362 (2006)

P. Choi, L. Cai, K. Frieda and X. S. Xie Science 
322, 442-446 (2008)
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Brownian motion

Coordinate of the particle

Coordinate 
of the 

particle

• Each 
step is: 
• A random 

“kick” from 
the solvent 



Brownian motion vs. a noisy cell

Coordinate of the particle

Coordinate 
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• Each 
step is: 
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“kick” from 
the solvent 
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Measurment of cells' response in an 
oscillatory purturbation 

The Frequency Dependence
of Osmo-Adaptation in
Saccharomyces cerevisiae
Jerome T. Mettetal,1 Dale Muzzey,1,2 Carlos Gómez-Uribe,1,3 Alexander van Oudenaarden1*

The propagation of information through signaling cascades spans a wide range of time scales,
including the rapid ligand-receptor interaction and the much slower response of downstream gene
expression. To determine which dynamic range dominates a response, we used periodic stimuli to
measure the frequency dependence of signal transduction in the osmo-adaptation pathway of
Saccharomyces cerevisiae. We applied system identification methods to infer a concise predictive
model. We found that the dynamics of the osmo-adaptation response are dominated by a fast-
acting negative feedback through the kinase Hog1 that does not require protein synthesis. After
large osmotic shocks, an additional, much slower, negative feedback through gene expression
allows cells to respond faster to future stimuli.

The mechanisms cells use to sense and re-
spond to environmental changes include
complicated systems of biochemical re-

actions that occur with rates spanning a wide
dynamic range. Reactions can be fast, such as
association and dissociation between a ligand and
its receptor (<1 s), or slow, such as protein syn-
thesis (>103 s). Although a systemmay comprise
hundreds of reactions, often only a few of them
dictate the system dynamics. Unfortunately, iden-
tification of the dominant processes is often dif-
ficult, and many models instead incorporate
knowledge of all reactions in the system.Although
occasionally successful (1–4), this exhaustive ap-
proach often suffers from missing information,
such as unknown interactions or parameters.

Here, we used systems-engineering tools to
study how oscillatory signals propagate through
a signal transduction cascade, which allowed
us to identify and to model concisely the in-
teractions that dominate system dynamics. The
cornerstone of this approach is to measure the
cascade output in response to input signals os-
cillating at a range of frequencies (5, 6). By
comparing the frequency response of the wild-
type network to that of mutants, the molecular
underpinnings of network dynamics can be de-
termined. Studies of neural and other phys-
iological systems have used systems theory (6),
and control theory has also been applied to
cellular networks (7–14).

We focused on the high-osmolarity glycerol
(HOG)mitogen-activated protein kinase (MAPK)
cascade in the budding yeast Saccharomyces
cerevisiae. This cascade forms a core module of
the hyperosmotic shock–response system and is
particularly well suited to frequency-response
analysis for several reasons. First, both the input

(extracellular osmolyte concentration) and output
(activity of the MAPK Hog1) of the network are
easily measured and manipulated. Second, the
molecular components of the network have been
well studied, which facilitates connecting dy-
namic models with molecular events. Finally, the
system contains multiple negative-feedback loops
that operate on different time scales (4, 15, 16). It
is still unclear which negative-feedback loop or
loops dominate the signaling dynamics and
whether the different feedback loops have dis-
tinct biological functions. We determined the
properties of themain negative-feedback loops in

the HOG network and arrived at a concise pre-
dictive model of the signaling dynamics. Fur-
thermore, by analyzing the system’s dynamics
over a range of osmotic-shock strengths, we
begin to understand how the multiple-feedback
architecture might be beneficial for osmotic ho-
meostasis in fluctuating environments.

After a hyperosmotic shock, membrane pro-
teins trigger a signal transduction cascade that
culminates in the activation of the MAPK Hog1,
which is primarily cytoplasmic before the osmo-
shock (17, 18). When activated, Hog1 accumu-
lates in the nucleus (Fig. 1A), where it activates a
broad transcriptional response to osmotic stress
(19). Constitutively active phosphatases dephos-
phorylate and deactivate Hog1, which leads to its
export from the nucleus. When osmotic balance
is restored, through changes either to the extra-
cellular environment or to the intracellular osmo-
lyte concentration, cascade activity ceases, and
the Hog1 nuclear enrichment decreases (Fig. 1A).
To estimate the amount of phosphorylated Hog1
in living cells, we simultaneously monitored the
cellular localization of Hog1-YFP, a yellow fluo-
rescent protein fused to Hog1, and Nrd1-RFP, a
red fluorescent protein fused to a strictly nuclear
protein. To quantify Hog1 nuclear localization,
we define the function, R(t) = (<YFP>nucleus/
<YFP>cell)population, as the ratio (averaged over
many cells) of mean YFP pixel intensities in
the nucleus and the whole cell [(Fig. 1A), red
circles].

1Department of Physics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. 2Harvard University
Graduate Biophysics Program, Harvard Medical School,
Boston, MA 02115, USA. 3Harvard-MIT Division of Health
Sciences and Technology, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed: E-mail:
avano@mit.edu
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Fig. 1. Enrichment of Hog1 nuclear localization is driven by pulsed salt shocks. (A) Localization of the
fusion protein Hog1-YFP and the nuclear marker Nrd1-RFP by fluorescence microscopy. We applied and
removed NaCl (0.2 M) as shown by the blue line. The population average translocation response (red
circles) was defined by the ratio of average YFP fluorescence in the nucleus to the average whole-cell YFP
fluorescence. (B) Oscillations of Hog1-YFP translocation in a population of cells (red circles) in response to
square-wave oscillations in the input of extracellular NaCl (blue line).
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“Spectroscopy” for a cell?



Linear response function
Frequency	
  domainTime	
  domain



Linear Response 
theory in cells?

Possibility of Fluctuation-
Dissipation theorem?



Is it possible to adapt the previously 
developed theories/equations (in 

mechanics)?

Master equation

Langevin equation Fokker-Planck equation

Gillespie’s algorithm

Fluctuation-dissipation theorem

Gillespie 1976

Gillespie 2000

Gillespie 2000

van Kampen 1997

Elf & Ehrenberg 2003
Sato 2003

Gillespie 1992



“Dynamic” version of Fluctuation-
Dissipation Theorem exists

Master equation

Langevin equation Fokker-Planck equation

Gillespie’s algorithm

Fluctuation-dissipation theorem

Gillespie 1976

Gillespie 2000

Gillespie 2000

van Kampen 1997

Elf & Ehrenberg 2003
Sato 2003

Gillespie 1992

Fluctuation-dissipation 
theorem (dynamic) 

Yan and Hsu, J. Chem. Phys. 2013

顏清哲 
Sanders C.-C. Yan 
顏淸哲 

Sanders Yan



“Dissipation”: back to 
steady state224109-3 C.-C. S. Yan and C.-P. Hsu J. Chem. Phys. 139, 224109 (2013)

FIG. 1. A schematic representation for the probability distribution function
P(xi, t) and its perturbation at t = 0.

⟨!xj(t)⟩, can be obtained as

⟨!xj (t)⟩ = ⟨xj (t) − µj ⟩ =
∫

(xj − µj )P (x, t)dx. (9)

By introducing Eq. (2) to replace P (x, t) and then Eq. (8) for
P (x, 0), the averaged response ⟨!xj(t)⟩ can be rewritten as

⟨!xj (t)⟩ =
∫ ∫

(xj − µj )T (x, t |x′, 0)P (x′, 0)dx′dx

(10)

≈ −!µi

∫
(xj − µj )

∫
T (x, t |x′, 0)

∂Pss(x′)
∂x ′

i

dx′dx,

(11)

where the steady-state mean for xj − µj is zero (Eq. (4)). The
expression in Eq. (11) is analogous to the well-known Green-
Kubo linear response theory in statistical mechanics.27, 33

To further simplify the expression in Eq. (11), we assume
that steady-state distribution, Pss(x), is a multivariate Gaus-
sian function:37

Pss(x) = C · exp
(

−1
2

(x − µ)T !−1(x − µ)
)

, (12)

where C is the normalization constant and ! is the covari-
ance matrix. This Gaussian expression helps us to rewrite the
partial derivative of Pss(x) in Eq. (11) to

∂Pss(x′)
∂x ′

i

= −
[

N∑

k=1

#−1
ik · (xk − µk)

]

Pss(x), (13)

where N is the number of species in the system. We insert
Eq. (13) into Eq. (11) to obtain the averaged deviation:

⟨!xj (t)⟩ ≈ !µi

N∑

k=1

[
#−1

ik

(∫
(xj − µj )

∫
T (x, t |x′, 0)

· (x ′
k − µk) · Pss(x′)dx′dx

) ]

= !µi

N∑

k=1

[
#−1

ik ⟨(xj (t) − µj )(xk(0) − µk)⟩
]

= !µi

N∑

k=1

#−1
ik Cjk(t). (14)

Thus, the response of a system is expressed in terms of steady-
state correlation functions, Cjk(t). Equation (14) is the dynam-
ical expression of FDT for stochastic chemical kinetics. We
note that our result is equivalent to the modified FDT derived
previously,28–30 by setting the energy function φ(x(t ′), k) as
(1/2)[(x − µ)T !−1(x − µ)]. If we link the perturbation λ in
Ref. 29 to our ki, which is one component in the kinetic pa-
rameter set k as in Eq. (1), the parameter set determines the
steady-state distribution Pss with the mean µ as in Eq. (4). The
response function can be obtained similarly to that implied in
Eq. (14).

At t = 0, the right-hand side of Eq. (14) can be reduced
to

⟨!xj (0)⟩ = !µiδij . (15)

For the ith component, we obtain the starting point ⟨!xi(0)⟩
= !µi after the perturbation, while other components start
from zeros. We note that similar linear response expression as
Eq. (14) has been obtained by Boffetta et al.27 but our result
is more complete with the correct initial response.

In Eq. (14), the response is a sum of terms, each describ-
ing the contribution through the correlation of component k
with the observed jth molecules. The covariance matrix ! has
the largest element #ii in the diagonal position, which is the
variance of species i’s abundance in a steady state. All other
#ik in row i are covariance between i and another compo-
nent k. The inverse matrix !−1 is similar. The diagonal el-
ements, #−1

ii , are typically the largest among all #−1
ik . As a

result, when component i’s production is perturbed and com-
ponent j’s response is observed, the time-correlation function
Cji(t) contributes the most, since it is multiplied by the largest
factor, #−1

ii , among all terms in the summation in Eq. (14).
Therefore, the dynamics in Cji(t) is the most important term
in the response of !xj(t).

In general, the perturbation may involve many different
components’ number changes. Equation (14) can be general-
ized when the perturbation changes several components’ pro-
duction rates, and a sum over several components’ changed
abundances !µi is needed:

⟨!xj (t)⟩ ≈
∑

i

[

!µi

N∑

k

[
#−1

ik Cjk(t)
]
]

. (16)

B. Predicting dynamic response from fluctuations

FDT can be used to obtain the response of a gene un-
der perturbations, even when the regulation is unknown.
A set of plausible trajectories of two proteins is shown in
Fig. 2(a). These trajectories are actually obtained from Model
I described in Eqs. (20) and (21) below. Here we aim to
present the useful aspects of FDT without referring to the
model details. From such fluctuating trajectories, we can tell
that the two proteins are negatively correlated. If we need
to further infer their regulation relationship, four correlation
functions, including auto-correlations and cross correlations,
can be obtained from the fluctuations (Fig. 2(b)). Following

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
60.251.210.232 On: Fri, 19 Dec 2014 03:23:19

Can be simulated 
directly. 
Can we “predict” 
it with FDT (i.e. 
with correlation 
function)?



Derivation for FDT

• Suppose a perturbation is applied at t=0: (I.e. 
increase or decrease the particle number in a 
reaction system) 

• Gaussian probability distribution assumed. 

• The time-dependent change in the averaged x(t) is:

�µ

h�xj(t)i = hxj(t)� µji =
Z

(xj � µj)P (x, t) dx



Dynamic Fluctuation-Dissipation 
Theorem for biochemical kinetics

• LHS: How x(t) comes back to the equilibrium, after a 
perturbation.  A non-equilibrium quantity. 

• RHS: The correlation function is the characteristic of 
fluctuation in x(t).  An equilibrium quantity. 

• A linear response theory is provided. 
• Can be generalized to multiple component systems.

x̄(t) � µ0 =
�µ

⇥2
⇥�x(0)�x(t)⇤

where x(t) = the particle number for the observed species
µ0 = equilibrium average for x

⇥2 = equilibirum variance for x

�x(t) = instantaneous fluctuation for x



Protein 1 (p1) Protein 2 (p2)

One stochastic trajectory 
obtained in the steady state.

Correlation Functions

Predict the response after a perturbation.

Calc
ulat

e

FDT

“Fluctuation” “Dissipation”



“Spectroscopy” for 
a cell?

224109-9 C.-C. S. Yan and C.-P. Hsu J. Chem. Phys. 139, 224109 (2013)

FIG. 8. Response functions from Model I, a direct regulation, and the repres-
silator. In both cases, the perturbations are introduced on p1, and the response
in p2 are calculated. Response function of repressilator with limited knowl-
edge is also included, i.e., without p3’s correlation function. (a) The normal-
ized response, following Eq. (14) in time domain and (b) the amplitude of the
response function at frequency domain, calculated from Eq. (40). The thick
blue, thin red, and red dashed lines in both panels are for different models as
indicated in panel (a).

Fig. 8. There is no intrinsic oscillation is this model.
For comparison, we also show another model, named as
repressilator,42

ṗ1 = k · G(p3) − γ · p1,

ṗ2 = k · G(p1) − γ · p2,

ṗ3 = k · G(p2) − γ · p3, (41)

G(pi) = Kn

Kn + pn
i

,

in which all the parameters are the same as in Model I. The
trajectories are oscillatory because there is a delayed negative
feedback in the model. Each protein changes its own produc-
tion in the opposite direction in the later time. We include
more discussion on the linear response of this model in the
supplementary material.41 Here we simulate this model and
calculate the linear response function in its frequency domain
and the results are included in Fig. 8. To test for applications
with limited knowledge, we also include the response without
one of the three correlation functions in Fig. 8.

Similar to the dielectric response spectra for molecular
systems, the linear response χ̃ lin

ji (ω) is an intrinsic property of
a system. It contains information for different dynamic time

scales, and if there is any, intrinsic oscillations. As seen in
Fig. 8, the response spectrum for Model I exhibits a Loren-
zian peak centered at ω = 0, indicating an exponential de-
cay in the long time scales, which is very similar to the De-
bye dielectric relaxation for molecules in a condensed phase.
We have also varied $k1(t) with different oscillatory frequen-
cies and the obtained p2’s response spectrum is very similar to
the linear response spectrum (results are in the supplementary
material41). The repressilator model has a resonant peak at its
natural oscillation frequency (ω = 0.03 rad/min), as expected.
In both cases, the response amplitude drops towards zero as
the frequency goes higher. For the response function with-
out one correlation function, the essential dynamic behavior
is still seen, similar to the Model II result we report above.
Therefore, the linear response function can be estimated even
for systems with limited observation, as long as the essen-
tial dynamic information is contained in the correlation func-
tion(s) collected.

In principle, the perturbation $ki(t) as we initially set
in Eq. (6) can be generalized to any time- or frequency-
dependent form. The FDT allows us to obtain the linear re-
sponse function χ̃ lin(ω) from steady-state fluctuation, as de-
scribed in Eq. (40). Therefore, it is possible to predict the sys-
tem’s response under any time-dependent perturbation from
the steady-state properties. In addition, we also show that
a component in the middle does not really affect the lin-
ear response prediction, since the correlation from the per-
turbed component to the observed species contains essential
information already. Therefore, even when the detailed reg-
ulation of a system may be unknown, we can still measure
the correlation function of the perturbed and observed pro-
tein numbers and compose the response function. This way,
important insights on the dynamics of the system can be
derived.

IV. CONCLUSION

We have derived the FDT that describes a stochastic sys-
tem’s response from a set of steady-state correlation func-
tions. With FDT, the dynamic response of a system can be
derived from the noise in the steady-state. The theoretical de-
velopment is independent of the underlying mechanism, and
thus the FDT is useful for general applications. The validity of
the FDT prediction is tested by comparing with the response
from numerical simulations. We find that in most cases, the
FDT prediction is mainly limited by the nonlinearity in the
kinetics. Systems with short lifetimes have a large range of
linear response, since the perturbation is quickly attenuated.
Therefore, the fast-responding systems, such as the sensing
function in cells, may have a better linear-response property.
There may exist unknown components between the perturbed
and the observed response components. In our test, missing an
intermediate component does not change the FDT prediction
significantly. With FDT, the linear response function can be
obtained from steady-state fluctuations, and insights for the
dynamics of the system can be derived. Our FDT is a fun-
damental theory in the study of fluctuation and response of
biological systems.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
60.251.210.232 On: Fri, 19 Dec 2014 03:23:19
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in p2 are calculated. Response function of repressilator with limited knowl-
edge is also included, i.e., without p3’s correlation function. (a) The normal-
ized response, following Eq. (14) in time domain and (b) the amplitude of the
response function at frequency domain, calculated from Eq. (40). The thick
blue, thin red, and red dashed lines in both panels are for different models as
indicated in panel (a).

Fig. 8. There is no intrinsic oscillation is this model.
For comparison, we also show another model, named as
repressilator,42

ṗ1 = k · G(p3) − γ · p1,

ṗ2 = k · G(p1) − γ · p2,

ṗ3 = k · G(p2) − γ · p3, (41)

G(pi) = Kn

Kn + pn
i

,

in which all the parameters are the same as in Model I. The
trajectories are oscillatory because there is a delayed negative
feedback in the model. Each protein changes its own produc-
tion in the opposite direction in the later time. We include
more discussion on the linear response of this model in the
supplementary material.41 Here we simulate this model and
calculate the linear response function in its frequency domain
and the results are included in Fig. 8. To test for applications
with limited knowledge, we also include the response without
one of the three correlation functions in Fig. 8.

Similar to the dielectric response spectra for molecular
systems, the linear response χ̃ lin

ji (ω) is an intrinsic property of
a system. It contains information for different dynamic time

scales, and if there is any, intrinsic oscillations. As seen in
Fig. 8, the response spectrum for Model I exhibits a Loren-
zian peak centered at ω = 0, indicating an exponential de-
cay in the long time scales, which is very similar to the De-
bye dielectric relaxation for molecules in a condensed phase.
We have also varied $k1(t) with different oscillatory frequen-
cies and the obtained p2’s response spectrum is very similar to
the linear response spectrum (results are in the supplementary
material41). The repressilator model has a resonant peak at its
natural oscillation frequency (ω = 0.03 rad/min), as expected.
In both cases, the response amplitude drops towards zero as
the frequency goes higher. For the response function with-
out one correlation function, the essential dynamic behavior
is still seen, similar to the Model II result we report above.
Therefore, the linear response function can be estimated even
for systems with limited observation, as long as the essen-
tial dynamic information is contained in the correlation func-
tion(s) collected.

In principle, the perturbation $ki(t) as we initially set
in Eq. (6) can be generalized to any time- or frequency-
dependent form. The FDT allows us to obtain the linear re-
sponse function χ̃ lin(ω) from steady-state fluctuation, as de-
scribed in Eq. (40). Therefore, it is possible to predict the sys-
tem’s response under any time-dependent perturbation from
the steady-state properties. In addition, we also show that
a component in the middle does not really affect the lin-
ear response prediction, since the correlation from the per-
turbed component to the observed species contains essential
information already. Therefore, even when the detailed reg-
ulation of a system may be unknown, we can still measure
the correlation function of the perturbed and observed pro-
tein numbers and compose the response function. This way,
important insights on the dynamics of the system can be
derived.

IV. CONCLUSION

We have derived the FDT that describes a stochastic sys-
tem’s response from a set of steady-state correlation func-
tions. With FDT, the dynamic response of a system can be
derived from the noise in the steady-state. The theoretical de-
velopment is independent of the underlying mechanism, and
thus the FDT is useful for general applications. The validity of
the FDT prediction is tested by comparing with the response
from numerical simulations. We find that in most cases, the
FDT prediction is mainly limited by the nonlinearity in the
kinetics. Systems with short lifetimes have a large range of
linear response, since the perturbation is quickly attenuated.
Therefore, the fast-responding systems, such as the sensing
function in cells, may have a better linear-response property.
There may exist unknown components between the perturbed
and the observed response components. In our test, missing an
intermediate component does not change the FDT prediction
significantly. With FDT, the linear response function can be
obtained from steady-state fluctuations, and insights for the
dynamics of the system can be derived. Our FDT is a fun-
damental theory in the study of fluctuation and response of
biological systems.
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Represillator:
a model with 
intrinsic 
oscillation

• A “resonance” is seen with 
periodic perturbation. 

• Probing oscillators in a cell.



Spectroscopy for molecules



“Spectroscopy” for a cell?

• Time scale separation? 
• Not quite. Observable 

oscillation are mostly in 100-103 

minutes. 
• Relaxation (and dilution due to 

cell div.), also in 101-103 

minutes.



Summary
• FDT ─ it is possible use correlation functions to 

compose the response function. 
• To predict response from fluctuation, linear 

response is necessary. 
• There is a limited range for linear response. 
• (data not shown)  It is possible to construct the 

response function for missing component 
situation.  

• Limited data sampling is not a big problem 
either.
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foreign organic molecules from the cytoplasm14 (see Supplementary
Information). As the fluorescent product molecules are pumped to
the surrounding medium and rapidly diffuse away, the advantage of
enzymatic amplification is lost.
To circumvent the efflux problem, we trap cells in closed micro-

fluidic chambers, such that the fluorescent product expelled from the
cells can accumulate in the small volume of the chambers, recovering
the fluorescence signal due to enzymatic amplification. The fast
efflux rate and short mixing time of the fluorescent molecules in
the miniature chambers guarantee that the fluorescence signal
outside the cells accurately reflects the enzymatic activity inside.
The microfluidic device is made of a soft polymer, polydimethyl-
siloxane (PDMS), and consists of a flow layer that contains the cells
and a top control layer (Fig. 1a)15,16. Actuation of two adjacent valves
in the control layer forms an enclosure of dimensions
100 £ 100 £ 10 mm3 (100 pl) in which cells can be trapped and
cultured17,18 (Fig. 1c, d; see also Supplementary Fig. S1). The micro-
fluidic chip is mounted on an inverted fluorescence microscope and
translated by a motorized stage, allowing multiplexing of data
acquisition by repeatedly scanning the chambers. Typically, 100
chambers can be scanned within less than 2min. Fluorescence is
excited with a tightly focused laser beam (Fig. 1a) that does not
directly illuminate the cell, avoiding cellular autofluorescence and
photo-damage to the cell.
We first show the ability to detect single enzyme molecules using

this technique by injecting a diluted solution of purified b-gal
enzyme and 300 mM of the fluorogenic substrate fluorescein-di-b-
D-galactopyranoside (FDG) into the chambers19. Fluorescence sig-
nals from different chambers increase with time, and the slopes give
the rates of hydrolysis (Fig. 1e). The distribution of hydrolysis rates
measured in the different chambers shows quantized and evenly
spaced peaks (Fig. 1f). We attribute these discrete peaks to integer
numbers of b-gal molecules. The spacing between the peaks is
60 pMmin21, which gives a calibration for the rate of increase in
fluorescein concentration corresponding to one enzyme molecule in
a chamber.
Another challenge for using b-gal to monitor gene expression in

live cells is that the cell wall acts as a barrier for FDG influx. We
quantify this effect in E. coli by measuring the hydrolysis rate for live
cells compared to cells treated with chloroform, which completely
permeabilizes cell membrane (Supplementary Fig. S4a). The ratio of
hydrolysis rates between these two cases is defined as the permeability
ratio, and is measured to be R ¼ 13 at 300 mmFDG. To increase FDG
influx, we transformed E. coli cells with a plasmid conferring
ampicillin resistance and grew the cells in media with b-lactam
antibiotics (see Methods). Under these conditions, cell wall synthesis
is partially inhibited, making the cells more permeable to FDG,
as evident by a lower value of R ¼ 2 ^ 0.3 (Supplementary Fig. S4b).
In determining the number of enzyme molecules in live cells
below, R ¼ 2 is used as a correction factor to the in vitro calibration
(Fig. 1f).
We then monitored gene expression in live E. coli cells in real time.

b-gal is expressed from the lacZ gene on the chromosomal DNA,
which is under the control of the lac promoter. Cells are grown in
glucose-containing medium without inducer to exponential phase;
hence the expression level is highly repressed20. We observed abrupt
changes in hydrolysis rates in chambers with dividing cells, as shown
in Fig. 2a, b. These step-wise increases in the rates indicate the
stochastic burst-like expression of new b-gal molecules. We attribute
the bursts to stochastic and transient dissociation events of the Lac
repressor from the promoter, followed by transcription of mRNA,
which is then translated into a few copies of the reporter protein
before the mRNA is degraded.
The expression of proteins from a given gene can be characterized

by two key parameters: the average frequency of expression bursts per
cell cycle, a; and the average number of protein molecules per burst,
b. Under conditions of exponential growth in minimal medium, the

burst frequency for protein expression from the repressed E. coli lacZ
gene is measured to be a ¼ 0.11 ^ 0.03 bursts per cell cycle. The
average burst size is measured to be b ¼ 5 ^ 2 enzymes, or 20 ^ 8
monomers per burst, which is consistent with biochemical estimates
of 25–30 b-gal monomers per mRNA21,22.
This real-time assay also allows us to measure the distribution of

the number of enzymes produced per burst (Fig. 2c). It can be well
fitted with an exponential distribution, PðnÞ ¼ C expð2n=bÞ, where n
is the number of b-gal molecules per burst and C is a normalization
constant. We attribute this distribution to the fact that the cellular
lifetime of the mRNA is exponentially distributed21,23. Previously
only theoretically predicted1,24, the exponential P(n) can be
accounted for by the competition between mRNA degradation by

Figure 2 | Quantitative real-time measurement of individual protein
expression events in live E. coli cells. b-gal is under the control of a
repressed lac promoter. a, Trace of a chamber containing dividing cells
shows abrupt changes in hydrolysis rates (arrows on black curve). An empty
chamber shows a constant background (red curve). b, Discrete jumps in
b-gal number are due to burst-like production of proteins. The number of
b-gal molecules is calculated by taking the time derivative of the traces in a
and compensating for fluorescein photobleaching (Supplementary
Information). c, Histogram of copy number of b-gal molecules per burst.
The distribution is well-fitted with an exponential function (black line), with
an average of five proteins per burst, and is a consequence of exponential
cellular lifetime of the mRNA.
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foreign organic molecules from the cytoplasm14 (see Supplementary
Information). As the fluorescent product molecules are pumped to
the surrounding medium and rapidly diffuse away, the advantage of
enzymatic amplification is lost.
To circumvent the efflux problem, we trap cells in closed micro-

fluidic chambers, such that the fluorescent product expelled from the
cells can accumulate in the small volume of the chambers, recovering
the fluorescence signal due to enzymatic amplification. The fast
efflux rate and short mixing time of the fluorescent molecules in
the miniature chambers guarantee that the fluorescence signal
outside the cells accurately reflects the enzymatic activity inside.
The microfluidic device is made of a soft polymer, polydimethyl-
siloxane (PDMS), and consists of a flow layer that contains the cells
and a top control layer (Fig. 1a)15,16. Actuation of two adjacent valves
in the control layer forms an enclosure of dimensions
100 £ 100 £ 10 mm3 (100 pl) in which cells can be trapped and
cultured17,18 (Fig. 1c, d; see also Supplementary Fig. S1). The micro-
fluidic chip is mounted on an inverted fluorescence microscope and
translated by a motorized stage, allowing multiplexing of data
acquisition by repeatedly scanning the chambers. Typically, 100
chambers can be scanned within less than 2min. Fluorescence is
excited with a tightly focused laser beam (Fig. 1a) that does not
directly illuminate the cell, avoiding cellular autofluorescence and
photo-damage to the cell.
We first show the ability to detect single enzyme molecules using

this technique by injecting a diluted solution of purified b-gal
enzyme and 300 mM of the fluorogenic substrate fluorescein-di-b-
D-galactopyranoside (FDG) into the chambers19. Fluorescence sig-
nals from different chambers increase with time, and the slopes give
the rates of hydrolysis (Fig. 1e). The distribution of hydrolysis rates
measured in the different chambers shows quantized and evenly
spaced peaks (Fig. 1f). We attribute these discrete peaks to integer
numbers of b-gal molecules. The spacing between the peaks is
60 pMmin21, which gives a calibration for the rate of increase in
fluorescein concentration corresponding to one enzyme molecule in
a chamber.
Another challenge for using b-gal to monitor gene expression in

live cells is that the cell wall acts as a barrier for FDG influx. We
quantify this effect in E. coli by measuring the hydrolysis rate for live
cells compared to cells treated with chloroform, which completely
permeabilizes cell membrane (Supplementary Fig. S4a). The ratio of
hydrolysis rates between these two cases is defined as the permeability
ratio, and is measured to be R ¼ 13 at 300 mmFDG. To increase FDG
influx, we transformed E. coli cells with a plasmid conferring
ampicillin resistance and grew the cells in media with b-lactam
antibiotics (see Methods). Under these conditions, cell wall synthesis
is partially inhibited, making the cells more permeable to FDG,
as evident by a lower value of R ¼ 2 ^ 0.3 (Supplementary Fig. S4b).
In determining the number of enzyme molecules in live cells
below, R ¼ 2 is used as a correction factor to the in vitro calibration
(Fig. 1f).
We then monitored gene expression in live E. coli cells in real time.

b-gal is expressed from the lacZ gene on the chromosomal DNA,
which is under the control of the lac promoter. Cells are grown in
glucose-containing medium without inducer to exponential phase;
hence the expression level is highly repressed20. We observed abrupt
changes in hydrolysis rates in chambers with dividing cells, as shown
in Fig. 2a, b. These step-wise increases in the rates indicate the
stochastic burst-like expression of new b-gal molecules. We attribute
the bursts to stochastic and transient dissociation events of the Lac
repressor from the promoter, followed by transcription of mRNA,
which is then translated into a few copies of the reporter protein
before the mRNA is degraded.
The expression of proteins from a given gene can be characterized

by two key parameters: the average frequency of expression bursts per
cell cycle, a; and the average number of protein molecules per burst,
b. Under conditions of exponential growth in minimal medium, the

burst frequency for protein expression from the repressed E. coli lacZ
gene is measured to be a ¼ 0.11 ^ 0.03 bursts per cell cycle. The
average burst size is measured to be b ¼ 5 ^ 2 enzymes, or 20 ^ 8
monomers per burst, which is consistent with biochemical estimates
of 25–30 b-gal monomers per mRNA21,22.
This real-time assay also allows us to measure the distribution of

the number of enzymes produced per burst (Fig. 2c). It can be well
fitted with an exponential distribution, PðnÞ ¼ C expð2n=bÞ, where n
is the number of b-gal molecules per burst and C is a normalization
constant. We attribute this distribution to the fact that the cellular
lifetime of the mRNA is exponentially distributed21,23. Previously
only theoretically predicted1,24, the exponential P(n) can be
accounted for by the competition between mRNA degradation by

Figure 2 | Quantitative real-time measurement of individual protein
expression events in live E. coli cells. b-gal is under the control of a
repressed lac promoter. a, Trace of a chamber containing dividing cells
shows abrupt changes in hydrolysis rates (arrows on black curve). An empty
chamber shows a constant background (red curve). b, Discrete jumps in
b-gal number are due to burst-like production of proteins. The number of
b-gal molecules is calculated by taking the time derivative of the traces in a
and compensating for fluorescein photobleaching (Supplementary
Information). c, Histogram of copy number of b-gal molecules per burst.
The distribution is well-fitted with an exponential function (black line), with
an average of five proteins per burst, and is a consequence of exponential
cellular lifetime of the mRNA.
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The distribution of 
protein expressed 

• Number of people in front of 
you ~ Poisson distribution. 
(Number of bursts) 

• Time each person spend ~ 
exponential distribution 
(Sunney Xie’s result: burst size 
distribution). 

• Total waiting time (total 
protein produced) 
distribution?

Wai$ng'$me'distribu$on?'

Figure	
  from:	
  
h"p://chaaidaani.wordpress.com/2012/05/02/good-­‐mannered-­‐when-­‐abroad-­‐bad-­‐mannered-­‐in-­‐pakistan/	
  	
  



Langevin’s equation

Regular reaction channels: Poisson statistics

p (t+ ⌧) =p (t) +
h
kpm⌧ + (kpm⌧)1/2 N(0, 1)

i

�
h
�pp⌧ + (�pp⌧)

1/2 N(0, 1)
i

A Gaussian 
random number

Protein burst model 
•dm/dt = km – γm m 
•dp/dt = kp m – γp p



Langevin’s equation, without 
having to model m (=mRNA)

Non-burst, “normal” channels

Burst channel

⇒ μp + σp N(0,1)p (t+ ⌧) =p (t) +
neX

i=1

xi

�
h
�pp⌧ + (�pp⌧)

1/2
N(0, 1)

i



How many protein is 
produced in time τ?

• in time τ, on the avg, aτ bursts.  
• Total:  aτb protein on the average. 
• What is the variance of this total # of 

protein?
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b: averaged burst size

a: burst frequency

τ



Some Basics
• Protein burst model 

• dm/dt = km – γm m 
• dp/dt = kp m – γp p 

• mRNA degrades fast: 
γm>> γp 

• mRNA production is 
slow: km << kp 

• 1 mRNA ≈ 1 burst 
protein production.

http://www.slideshare.net/aftonchase/27-28-105-fa13-transcription-and-translation-skel



Some Basics
• Protein burst model 

• dm/dt = km – γm m 
• dp/dt = kp m – γp p 

• Protein production rate 
= kpm = kp km/γm  

= km (kp/γm) 
• a = km 

• b = kp/γm 

• each mRNA produces 
kp/γm protein.  This # is 
exp. in distribution.

http://www.slideshare.net/aftonchase/27-28-105-fa13-transcription-and-translation-skel



How many protein is 
produced in time τ?

• in time τ, on the avg, aτ bursts.  
• Total:  aτb protein on the average. 
• What is the variance of this total # of 

protein?
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b: averaged burst size

a: burst frequency

τ

2aτb2

aτb



Langevin’s equation can 
be formulated

Non-burst, “normal” channels

Burst channel

p (t+ ⌧) = p (t) +
⇣
a⌧bp + (a⌧bp (2bp + 1))1/2 N(0, 1)

⌘

�
⇣
�pp⌧ + (�pp⌧)

1/2 N(0, 1)
⌘
,



The noise of a bursting gene production is      
times the no-burst (1 copy at a time) noise.

Master equation

Langevin equation Fokker-Planck equation

Gillespie’s algorithm

Fluctuation-dissipation theorem

Gillespie 1976

Gillespie 2000

Gillespie 2000

van Kampen 1997

Elf & Ehrenberg 2003
Sato 2003

Gillespie 1992

Fluctuation-dissipation 
theorem (dynamic) 

For simulation 
gene expression.

p
2

Yan and Hsu, J. Chem. Phys. 2013

Yan, Chepyala, Yen, Chen, Hsu
(Submitted)



Noises in the 
development of worms 

(C. elegans)

Yi-Chen (Ethan) Chen 陳奕丞Surendhar Reddy + Yi-Chen Chen 陳奕丞

Collaboration 
project with  

NTU 吳益群教
授
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Is noise buffered by the 
gene regulation network?  

Tsai-Fang Huang and Yi-Chun Wu

GENOTYPE WILD TYPE PRECOCIOUS RETARDED

blmp-1(s71) 7 93 0
lin-29(n546) 100 0 0
lin-29(RNAi) 100 0 0
dre-1(dh99) 100 0 0
daf-12(rh61rh411) 100 0 0
lin-29(n546);dre-1(dh99) 0 0 100
lin-29(n546);daf-12(rh61rh411) 0 0 97
dre-1(dh99);daf-12(rh61rh411) 0 0 98
blmp-1(s71);daf-12(rh61rh411) 43 47 10
blmp-1(s71);lin-29(RNAi) 30 54 16
blmp-1(RNAi);lin-29(n546);dre-1(dh99) 22 43 35
blmp-1(s71);dre-1(dh99);daf-12(rh61rh411) 12 73 15

Phenotype: Dorsal 
turn  

timing (and shape) %

Is	
  there	
  a	
  noise-­‐
filtering	
  mechanism?

Lost	
  of	
  “noise-­‐filtering”	
  func>on?	
  



We built a model that generates almost 
all experimental mutant phenotypes. 

Node Regulatory  Logic

lin-­‐‑29 lin-­‐‑29*=  not  lin-­‐‑42  and  not  blmp-­‐‑1

blmp-­‐‑1 blmp-­‐‑1*=  (lin-­‐‑42  and  not  lin-­‐‑29  and  not  daf-­‐‑12)  or  blmp-­‐‑1
unc-­‐‑5 unc5*  =  (lin-­‐‑29  or  daf-­‐‑12)  and  not  blmp-­‐‑1



Interlinked FFL filters 
upstream noises



Adding noise in simulation

• Langevin’s equation: Noise can be easily 
added and removed. 

• All genes have “intrinsic” noises — the 
Gaussian noise in their production and 
degradation.   
• Production: burst noise considered. 

• Regulated genes have propagated noise. 
• Other noises (not considered) — Global 

noise.



Fano Factor (FF)
=Variance/Mean

Results from 1000 
randomly selected 
parameter sets that can 
produce wild type 
phenotype.



Another set of IFFL



All noise added 
& propagated



Is noise buffered by the 
gene regulation network?  

Tsai-Fang Huang and Yi-Chun Wu

GENOTYPE WILD TYPE PRECOCIOUS RETARDED

blmp-1(s71) 7 93 0
lin-29(n546) 100 0 0
lin-29(RNAi) 100 0 0
dre-1(dh99) 100 0 0
daf-12(rh61rh411) 100 0 0
lin-29(n546);dre-1(dh99) 0 0 100
lin-29(n546);daf-12(rh61rh411) 0 0 97
dre-1(dh99);daf-12(rh61rh411) 0 0 98
blmp-1(s71);daf-12(rh61rh411) 43 47 10
blmp-1(s71);lin-29(RNAi) 30 54 16
blmp-1(RNAi);lin-29(n546);dre-1(dh99) 22 43 35
blmp-1(s71);dre-1(dh99);daf-12(rh61rh411) 12 73 15

Phenotype: Dorsal 
turn  

timing (and shape) %



WT and Mutant 
behavior



How shall we determine phenotype?
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Is noise buffered by the 
gene regulation network?  

Tsai-Fang Huang and Yi-Chun Wu

GENOTYPE WILD TYPE PRECOCIOUS RETARDED

blmp-1(s71) 7 93 0
lin-29(n546) 100 0 0
lin-29(RNAi) 100 0 0
dre-1(dh99) 100 0 0
daf-12(rh61rh411) 100 0 0
lin-29(n546);dre-1(dh99) 0 0 100
lin-29(n546);daf-12(rh61rh411) 0 0 97
dre-1(dh99);daf-12(rh61rh411) 0 0 98
blmp-1(s71);daf-12(rh61rh411) 43 47 10
blmp-1(s71);lin-29(RNAi) 30 54 16
blmp-1(RNAi);lin-29(n546);dre-1(dh99) 22 43 35
blmp-1(s71);dre-1(dh99);daf-12(rh61rh411) 12 73 15

Phenotype: Dorsal 
turn  

timing (and shape) %



Simulating phenotypes

Wild type blmp-1 daf-12



Computer modeling 
helps us see why/how
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Phenotype diversity 

• Most previous work: gene expression noises 
⇒diverse phenotypes. 

• Our result does not support such a link. 
• unc5 expression uncertainty does not directly 

correlate with DTC turning phenotypes. 
• It is [Dynamics + noises] 

• WT: stay low.  Even with noisy expression 
phenotype remains uniform. 

• mutant: unc5 expression goes up and down.
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