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Where am 1I?



Academia Sinica is located to
the East of Taipei City






My research interests

* Electron and energy transter problems.
* |n quantum chemistry.
e With an application to
photosynthesis.
* most of our application are in
Materials.

* Dynamical modeling in Biology.
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We are interested in

Dynamic

Description of Biological systems.

e What is really going on in a living system?
* How the desired outputs are generated.
* \What may be the factors that contribute
to the special properties of such
dynamics.



In the framework of biological
observations

T. Ideker et al. Annu. Rev. Genomics Hum. Genet. (2001)



Elowitz, 2002

Dynamics in stochastic biological
processes — “noisy cells”



Gene expression is “noisy”

inactive

active

_acamac

Cell to cell variability in a
population

Gene transitions randomly between
active and inactive states

two genes (cfp, -green; yfp, -red)
Science 309, 2010-2013 (2009) 9 P, -9 yp

| controlled by identical promoters,
Science 304, 1811-1814 (2004) integrated at the same locus on

homologous chromosomes.



Today'’s talk includes

. Theoretical Development for fluctuation
and dynamics in a cell.

. An account for gene expression noises.
-for computer simulation.

. An application project in C. elegans
development.
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L. Cai, N. Friedman and X. S. Xie
Nature 440, 358-362 (2006)

P. Choi, L. Cai, K. Frieda and X. S. Xie Science
322, 442-446 (2008)



Brownian motion
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Brownian motion vs. a noisy cell
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Measurment of cells' response in an
oscillatory purturbation




"Spectroscopy” tor a cell?

Jvmn’



Linear response function

Time domain Frequency domain



Linear Response
theory in cells?

Possibility of Fluctuation-
Dissipation theorem?



s it possible to adapt the previously
developed theories/equations (in
mechanics)?

Gillespie 1992 Gillespie 1976

>_

van Kampen 997

Gillespie 2000

v

Gillespie 2000

Elf & Ehrenberg 2003
Sato 2003




“"Dynamic” version of Fluctuation-
Dissipation Theorem exists

Gillespie 1992 Gillespie 1976

>_

van Kampen 1997

Gillespie 2000 l

Gillespie 2000 Elf & Ehrenberg 2003
Sato 2003

Yan and Hsu, J. Chem. Phys. 201 3



"Dissipation”: back to
steady state

Can be simulated
directly.

Can we “predict”
it with FDT (i.e.
with correlation
function)?




Derivation for FDT

» Suppose a perturbation is applied at =0: (l.e.
increase or decrease the particle numberin a
reaction system) A

» Gaussian probability distribution assumed.

* The time-dependent change in the averaged x(¢) is:

(A (8)) = {a;(8) — ) = / (2; — 1) P (x, t) dx



Dynamic Fluctuation-Dissipation
Theorem for biochemical kinetics

(0)ox (1))

where x(t) = the particle number for the observed species

Lo = equilibrium average for x

32 = equilibirum variance for x

0x(t) = instantaneous fluctuation for x

« LHS: How x(t) comes back to the equilibrium, after a
perturbation. A non-equilibrium quantity.

« RHS: The correlation function is the characteristic of
fluctuation in x(t). An equilibrium quantity.

» A linear response theory is provided.
 Can be generalized to multiple component systems.



Protein 1 (p1)—Protein 2 (p2)

Correlation Functions

One stochastic trajectory
obtained in the steady state.

“"Fluctuation”

"Dissipation™

Predict the response after a perturbation.



"Spectroscopy” tor
a cell?

Represillator:

A - B
a model with _
Intrinsic \ /
C ™

oscillation

® A "resonance” is seen with
periodic perturbation.

® Probing oscillators in a cell.

VAVAVAVA




Spectroscopy for molecules

VAVAVAVA




"Spectroscopy” tor a cell?

VAVAVAVS

® Time scale separation?

® Not quite. Observable
oscillation are mostly in 10°-103
minutes.

® Relaxation (and dilution due to
cell div.), also in 101-103

minutes.



Summary

FDT — it is possible use correlation functions to
compose the response function.

To predict response from tluctuation, linear
response Is necessary.

There is a limited range for linear response.
(data not shown) It is possible to construct the
response function for missing component
situation.

Limited data sampling is not a big problem
either.




N
&)

Number of B-gal molecules &

o
o -

N
o
1

—
(@)
1

—
o
1

Ol
1

50 100 150
Time (min)

L. Cai, N. Friedman and X. S. Xie
Nature 440, 358-362 (2006)

P. Choi, L. Cai, K. Frieda and X. S. Xie Science
322, 442-446 (2008)



Protein produced
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Burst production: noiser
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The distribution of
orotein expressed

e Number of people in front of
you ~ Poisson distribution.
(Number of bursts)

 Time each person spend ~
exponential distribution
(Sunney Xie's result: burst size
distribution).

e Total waiting time (total
protein produced)
distribution?

Figure from:
http://chaaidaani.wordpress.com/2012/05/02/sood-mannered-when-abroad-bad-mannered-in-pakistan/




Langevin’'s equation

Protein burst model
'dm/dt = km — Ym m
*dp/dt =k, m - Y, p 7 e i )

random number

p(t+7)=p)+ [,lgme + (kme)l/Z _N(Ov 1)

— {WpPT + (prT)l/2 N(0,1)

Regular reaction channels: Poisson statistics



Langevin’s equation, without
having to model m (=mRNA)

Burst channel

p(t+7)=p(t)+)» = 1, + 6, N(0,1)
i=1 '

— [P+ (3p7) 2 N (0, 1)

Non-burst, “normal” channels



How many protein Is
produced in time 77

A a: burst frequency

b: averaged burst size

>
Time

Protein produced

® in time 7, on the avg, at bursts.

® Total: atb protein on the average.
® \What is the variance of this total # of
protein?




Some Basics

® Protein burst model
 dm/dt=kn—=-Ymm
® dp/dt=kom-Ypp

® MRNA degrades fast:
Ym=>> Yp

® mMRNA production is
slow: km << ko

® 1 mRNA = 1 burst

protein production.

http://www.slideshare.net/aftonchase/27-28-105-fa13-transcription-and-translation-skel



® Protein burst model

+ amdi=kn-v.m  Syme Basics

® dp/dt=kom-Ypp

® Protein production rate

= I<m (kp/Ym)
® a =kn
® b =Kko/Ym

® cach mRNA produces
ko/Ym protein. This # is
exp. in distribution.

http://www.slideshare.net/aftonchase/27-28-105-fa13-transcription-and-translation-skel



How many protein Is
produced in time 77

A a: burst frequency

b: averaged burst size

>
Time

Protein produced

® in time 7, on the avg, at bursts.

® Total: atb protein on the average. atb
® \What is the variance of this total # of

protein?  2atb?




Langevin’'s equation can
pe formulated

Burst channel

p(t+7)=p(t)+ (apr + (aTby (20, + 1)>1/2 N (0, 1))

— (VppT + (”yp]m)l/2 N (0, 1)) ,

Non-burst, “normal” channels



The noise of a bursting gene production isv/2
times the no-burst (1 copy at a time) noise.

Gillespie 1992 Gillespie 1976

>_

van Kampen 1997

Gillespie 2000 l

Gillespie 2000 Elf & Ehrenberg 2003

Sato 2003

Yan, Chepyala, Yen, Chen, Hsu
(Submitted)

Yan and Hsu, J. Chem. Phys. 2013




Collaboration
project with

NTU R EFE
A

Noises in the
development of worms
(C. elegans)

Surendhar Reddy + Yi-Chen Chen BRZEz&



The timing of gonad turn

(uncS expression) is tightly

netrin: guidance cue
UNC-5: a netrin receptor

Genes Dev. 14, 2486-2500 (2000)
Development 127, 585-594 (2000) Picture by courtesy of Yi-Ting Cheng 4




s noise buffered by the
gene regulation network?

blmp-1(s71)

lin-29(n546)

lin-29(RN A1) Is there a noise-
dre-1(dh99) filtering mechanism?<

daf-12(rh61rh411)
lin-29(n546);dre-1(dh99)
lin-29(n546);daf-12(rh61rh411) 97
dre-1(dh99);daf-12(rh61rh411) 98
blmp-1(s71),daf-12(rh61rh411) 47 10
o7 -2 SN < Lost of ”noisgfjﬁltering” function?
blmp-1(RN Ai);lin-29(n546);dre-1(dh99) 43 35
blmp-1(s71),dre-1(dh99);daf-12(rh61rh411) 73 15




We built a model that generates almost
all experimental mutant phenotypes.

Node Regulatory Logic
lin-29*= not lin-42 and not blmp-1

blmp-1*= (lin-42 and not [in-29 and not daf-12) or blmp-1
uncd* = (lin-29 or daf-12) and not blmp-1




Interlinked FFL filters
upstream noises




Adding noise in simulation

® [angevin's equation: Noise can be easily
added and removed.

® All genes have “intrinsic” noises — the
Gaussian noise in their production and
degradation.
® Production: burst noise considered.

® Regulated genes have propagated noise.

® Other noises (not considered) — Global
noise.



Fano Factor (FF)
=Variance/Mean

Results from 1000
randomly selected
parameter sets that can
produce wild type
phenotype.




Another set of |IFFL




All noise addea
& propagated




s noise buffered by the

gene regulation network?

blmp-1(s71)

[in-29(n546)

lin-29(RNAi)

dre-1( dh99)

 daf-12(rh61rh411)
lin-29(n546);dre-1(dh99)
lin-29(n546);daf-12(rh61rh411)
dre-1(dh99),daf-12(rh61rh411)
blmp-1(s71),daf-12(rh61rh411)
blmp-1(s71);lin-29(RN Ai)
blmp-1(RNAi);lin-29(n546);dre-1(dh99)
bimp-1(s71),dre-1(dh99);daf-12(rh61rh411)




WT and Mutant
behavior




How shall we determine phenotype?

WT - detrministic
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s noise buffered by the

gene regulation network?

blmp-1(s71)

lin-29(n546)

lin-29(RNAi)

dre-1(dh99)

daf-12(rh61rh411)
lin-29(n546);dre-1(dh99)
lin-29(n546);daf-12(rh61rh411)
dre-1(dh99),daf-12(rh61rh411)
blmp-1(s71),daf-12(rh61rh411)
blmp-1(s71);lin-29(RN Ai)
blmp-1(RNAi);lin-29(n546);dre-1(dh99)
bimp-1(s71),dre-1(dh99);daf-12(rh61rh411)




Simulating phenotypes

Wild type blimp-1 daf-12



Computer modeling
helps us see why/how

WT - Unc5 Protein SS

Unc5-Stoch.mean
Unc5-prot.Stoch

WT

Unc5 Protein(SS)

time(hr)
bimp1;daf12 - Unc5 Protein SS

Unc5-Stoch.mean
Unc5-prot.Stoch

Mutant:
blimp1,daf12

Unc5 Protein(SS)

time(hr)

WT-Unc5 SS with4H Integ&DTC turn at1430

Unc5-Stoch.mean

fUncs-WT-Det

mean-/ . __-Stoch
Uncb
Unc5-threshold

fUnCs-Stoch

time(hr)

blmp1;daf12-Unc5 SS with4H Integ&DTC turn at1430

Unc5-Stoch.mean
| Jnes”WT-Det
mean-fUncS-Stoch

Unc5-threshold

time(hr)




Phenotype diversity

® Most previous work: gene expression noises
=diverse phenotypes.

® Qur result does not support such a link.
® uncd expression uncertainty does not directly
correlate with DTC turning phenotypes.
® |tis [Dynamics + noises]

® \WT: stay low. Even with noisy expression
phenotype remains uniform.
® mutant: uncS expression goes up and down.



Many thanks to...

® Funding:

® Excellent
collaborators and
students.




