Integrative omics analyses for tumor stratification and CAR T cell therapy

Substantial differences in molecular profiles of pediatric and adult AML
 Identification of gliomas enriched for CAR T cell therapy

Hamid Bolouri

Division of Human Biology Fred Hutchinson Cancer Research Center TARGET

Therapeutically Applicable Research to Generate Effective Treatments

http://target.cancer.gov/

NIH

Daniela Gerhardt Tanja Davidson,... FHCRC (pediatric AML) Soheil Meshinchi Rhonda Ries

Phoenix Children's (DNA.me)

Robert Arceci Jason Farrar, ... + contractors at St Jude's and BCCA

Bioinformatics Working Group: Tim Triche Jr, Jason Farrar, Emilia Lim, HB

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

CHILDREN'S ONCOLOGY GROUP

The world's childhood cancer experts

Todd Alonzo Alan Gamis Rob Gerbing

Data Overview

Pediatric Acute Myeloid Leukemia

- □ 197 whole genome sequences (matched Dx & remission)
- □ RNA-seq for 158 samples (500 more processed)
- □ miRNA-seq for 637 samples
- □ 142 Infinium 450K methylation arrays (~600 more to come)
- □ > 50 clinical data elements (incl. cytogenetics) per sample
- □ Targeted sequencing of ~400 genes in
 - 143 of the 197 whole-genome-sequenced samples
 - ~ 650 additional 'frequency validation' samples

Plans/hopes for 'full coverage' of a total of ~2000 samples.

junctions CNVs > 10Kbp Indels ~ 1 – 10 bp SNVs

CompleteGenomics whole genome sequencing: 31- to 35-base mate-paired reads up to 700bp apart

miRNA-seq (n=637)

Emilia Lim

Unsupervised clustering of DNA methylation probes (n=142)

(Tim Triche Jr and Jason Farrar)

Normal blood cells

variant verification

discovery set

Removed avgNormalizedCvg < 20 Removed standard deviation of LAF > 0.22 Removed ploidyScore < 30 Checked no chrM == OK

Removed CNVs in centromeric/telomeric regions

Removed 6 CNV regions < 10Kbp

Per patient, merged CNV regions within 10Kbp distance

Marked chr-arm level CNVs (footprint > 50%)

Added-in chr CNV data from CDEs

(115 of 197 samples have CNVs)

Matched the selected CGI CNVs (475 up, 488 down) to

recurrent SNP6 CNV regions in 192 matched Dx samples:

- recur in at least 5 samples (2.5%)
- 803,917,882bp amplified in 894 segments
- 533,421,564bp deleted in 1434 segments
 - ➢ 402 (85%) match for CN up
 - > 367 (75%) match for CN down

15/15 predicted ELF1 deletions were confirmed by a nanoString tiling array

Example sub-populations enriched for specific targets

Mutual exclusivity patterns

Substantial differences in the genomic landscapes of pediatric and adult AML

Substantial differences in the genomic landscapes of pediatric and adult AML

Independent confirmation

TARGET v TCGA

TARGET v 398 ECOG patients (Ross Levine, MSKCC)

Pediatric Acute Myeloid Leukemia (AML)

Failure of a normal developmental process (block in HSC differentiation) + massive proliferation of immature white blood cells

Blood, 2005, (106):1519-1524

© 2011 Terese Winslow LLC

HSC Differentiation Pathway

Integrative omics analyses for

tumor stratification and CAR T cell therapy

- 1) Stratification of AMLs by co-occurrence and mutual exclusion of events
- 2) Using multi-modal sample similarity to identify gliomas enriched for CAR T cells

(with Lue Ping Zhang and Eric Holland)

1105 TCGA gliomas

- Single Nucleotide Alterations (SNAs) from exome-sequencing
- Copy Number Alterations (CNAs) from SNP6.0 arrays
- DNA methylation from Infinium 450K arrays
- mRNA-seq
- Clinical data, but

 $\sim 2/3^{rd}$ of lower grade gliomas were 'alive' at data collection

 $\simeq 1/5^{\text{th}}\,$ have no status information

feature sets ——

Approach:

- ✓ Use many similarity measures
- ✓ Use many feature (gene) sets
- ✓ Plot sample similarities in 2D
- ✓ Co-color & view sample subsets across all plot
- Use automated methods to find informative plots

Example available gene sets (similarity/distance 'features')

- 🕨 H (hallmark gene sets, 50 gene sets) 🖬
- 🕨 C1 (positional gene sets, 326 gene sets) 🔽
 - by chromosome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
- 🕨 C2 (curated gene sets, 4725 gene sets) 🔽
 - CGP (chemical and genetic perturbations, 3395 gene sets) 2
 - 🕨 CP (Canonical pathways, 1330 gene sets) 🖬
 - CP:BIOCARTA (BioCarta gene sets, 217 gene sets)
 - CP:KEGG (KEGG gene sets, 186 gene sets)
 - CP:REACTOME (Reactome gene sets, 674 gene sets)
- 🕨 C3 (motif gene sets, 836 gene sets) 🖬
 - MIR (microRNA targets, 221 gene sets) 2
 - TFT (transcription factor targets, 615 gene sets) 2
- 🖻 C4 (computational gene sets, 858 gene sets) 🖬
 - CGN (cancer gene neighborhoods, 427 gene sets) 2
 - CM (cancer modules, 431 gene sets) 2
- 🕨 C5 (GO gene sets, 1454 gene sets) 🖬
 - 🕨 BP (GO biological process, 825 gene sets) 🔽
 - 🕨 CC (GO cellular component, 233 gene sets) 🔽
 - MF (GO molecular function, 396 gene sets) 1
- C6 (oncogenic signatures, 189 gene sets) 2
- 🕨 C7 (immunologic signatures, 1910 gene sets) 🔽

Example distance measures

Numerical Data

EuclideanDistance • SquaredEuclideanDistance • NormalizedSquaredEuclideanDistance

ManhattanDistance • ChessboardDistance • BrayCurtisDistance • CanberraDistance

CosineDistance
CorrelationDistance BinaryDistance TimeWarpingDistance

Boolean Data

HammingDistance JaccardDissimilarity MatchingDissimilarity DiceDissimilarity RogersTanimotoDissimilarity RussellRaoDissimilarity SokalSneathDissimilarity YuleDissimilarity

String Data

EditDistance • DamerauLevenshteinDistance • HammingDistance • SmithWatermanSimilarity • NeedlemanWunschSimilarity

Images & Colors

ImageDistance
ColorDistance

Geospatial & Temporal Data

GeoDistance

DateDifference

http://www.wolfram.com

Genomic sample similarity measures

Joint SNA:CNA similarity = **S**/sum(**S**) + **C**/sum(**C**)

Gliomas can be subdivided into 8 genomic subtypes

Bolouri, Zhao, Holland, PNAS 2016

Non-CIMP LGGs are GBM-like genomically and by survival.

Bolouri, Zhao, Holland, PNAS 2016

ROR1 is a plausible target in gliomas

Protein Cell 2014, 5(7):496–502

A set of 329 genes segregates gliomas into high and low ROR1-expression groups

Cluster of 183 short-lived genomically highly similar tumors.

Expression data is available for 105 of these samples.

70 (67%) of 105 samples are selected ROR1-high samples.

High ROR1 mRNA levels are tumor-specific and associated with glioma mesenchymal subtype

Our ROR1-based sample selection is highly concordant with the intersection of TCGA expression cluster 'LGr4' with the '*Mesenchymal*' and '*Classical*' expression subtypes.

Our findings are supported by RNA-seq data from an independent UW GBM cohort

TCGA alone

TCGA + UW

81% of genomically-selected tumors (gold) are positive for 1 of 3 CAR T cells

