
1

Introduction to expression analysis
(RNA-seq)

Transcript quantification using Salmon and
differential expression analysis using baySeq

Philippine Genome Center
University of the Philippines

Prepared by
Nelzo C. Ereful
National Institute of Agricultural Botany
Cambridge, UK

2

General information

The following standard icons are used in the hands-on exercises to help you

locate:

Important Information

General information / notes

Follow the following steps

Questions to be answered

Warning – PLEASE take care and read carefully

Optional Bonus exercise

Optional Bonus exercise for a champion

Resources used

Salmon: not the fish but … https://combine-lab.github.io/salmon/

baySeq: http://bioconductor.org/packages/release/bioc/html/baySeq.html

Reference used

Most of these notes are lifted from these references:

Thomas J. Hardcastle. 2015/2016. baySeq: Empirical Bayesian analysis of

patterns of differential expression in count data. From www.bioconductor.org

(vignette)

Thomas J Hardcastle and Krystyna A Kelly. 2010. baySeq: Empirical Bayesian

methods for identifying differential expression in sequence count data. BMC

Bioinformatics.

https://combine-lab.github.io/salmon/
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://www.bioconductor.org/

3

In this module, we will use Salmon to quantify transcript expression. We will

then calculate differential expression using baySeq between two Claviceps

samples – Control and Germinating – each with three replicates. Ideally, we

need biological replicates (two or more for RNA-seq) to improve statistical

power. For demo purposes and for the interest of time, we will quantify

transcript expression in only one replicate.

Before performing differential expression, we need to estimate transcript

expression for each gene or isoform of each sample replicate. One of the

tools to perform this function is Salmon.

Salmon gets the best results in 'read' mode where you give it your fastq files.

First you build an index of your cDNA reference transcriptome and then align

the reads and get expression quantification estimates. For more information

on this mode, go to the link above.

In our case, since we already obtained the alignment outputs, we will use the

alignment-based mode of salmon.

Using the bam output you generated from the bowtie alignment (remapping),

run the command below. The arguments in this command include:

--alignments input alignment (BAM) file(s)

--targets FASTA format file containing target transcripts

--biasCorrect Perform sequence-specific bias correction

salmon quant --libType U \

--alignments alignments.bam \

--targets /path/to/ Claviceps.new.output.fa \

--threads 2 \

--biasCorrect \

--useErrorModel \

--output C.purpurea.salmon

4

To open the output, on the command line type in:

$ cd C.purpurea.salmon

$ less quant.sf

To extract the NumReads column, use the following command:

cut –f1,4 quant.sf > NumRead.sf

where 1 and 4 are columns corresponding to the annotation and the read

counts, respectively. These values depend on the version of salmon you are

using.

Stop. Instructions will be given after you generated the results.

You will be given a CSV file.

Using R, you can manipulate the data using the following commands:

Open R (or R in Linux)

Load the baySeq package

 library(baySeq)

Because high-throughput sequencing (RNA-seq) experiments are usually

massive, we will use parallel processing as implemented by the snow

package. If parallel is not present we can proceed with NULL cluster

 if(require("parallel")) cl <- makeCluster(2) else cl <- NULL

#data frame

 df <- read.csv("CvW_ReadCount.csv", header=TRUE)

 df[1:5,]

#sample view

5

 Name C1 C2 C3 W2 W4 W5

#1 Traes_7DS_FFE9ACDAB.2 246 32 703 128 361 137

#2 Traes_7DS_FFA36F6DA.1 12 7 18 12 6 5

#3 Traes_7DS_FF9F1CF23.1 0 0 0 0 0 0

#4 Traes_7DS_FF911FA4A.1 15 14 20 8 29 6

#5 Traes_7DS_FF7C9C6FD.1 0 0 2 1 2 0

We assume that the read counts show differential expression between the

first three libraries (replicates) and the last three libraries. Our replicate

structure, used to estimate the prior distributions on the data, can thus be

defined as

 replicates <- c("C1", "C2","C3", "W2","W4","W5")

 We expect that some tags will be equivalently expressed in all libraries (this

corresponds to NDE model); some tags will show differential expression (DE)

 groups <- list(NDE=c(1,1,1,1,1,1), DE = c(1,1,1,2,2,2))

Combine the count data

 CD <- new("countData", data = as.matrix(df[,2:7]), replicates =

replicates, groups = groups)

We can optionally add annotation

 CD@annotation <- data.frame(name = df[1])

#calculate the number of entries or rows

 length(CD@data[,1])

#determine summary statistics

 summary(CD@data)

#generate histogram – distribution curve

 hist(log(CD@data[,1]))

#generating figures (histogram, MA, scatterplots)

jpeg("Histogram_count.jpg")

hist(log(CD@data[,1]))

dev.off()

6

pdf("Histogram_count.pdf")

hist(log(CD1@data[,1]))

dev.off()

jpeg("Histogram_plotMA.jpg")

plotMA.CD(CD, samplesA = "C", samplesB = "B", col = c(rep("red", 10000),

rep("black", 90000)))

dev.off()

#compute correlation between samples or replicates

 cor(CD@data[,1],CD@data[,2])

#Pre-filtering

 CD1 <- CD[rowSums(CD@data)>0,]

#Threshold value for pre-filtering (the number of columns of the data will be

the threshold value)

 CD1 <- CD[rowSums(CD@data) > ncol(CD),]

Open R (if you haven’t done so)

#Libray sizes can be defined from the data

 libsizes(CD1) <- getLibsizes(CD1)

#Calculate priors

 CD1 <- getPriors.NB(CD1, cl = cl)

#Acquire posterior likelihoods

 CD1 <- getLikelihoods(CD1, cl = cl)

After performing differential expression analysis, the following script will list all

DE genes with FDR lower than 0.05:

 topCounts(CD1, group="DE", FDR = 0.05, normaliseData=TRUE)

7

If you want to save the output into a file, use:

 table = topCounts(CD1, group="DE", number=nrow(df),

+ normaliseData=TRUE)

 write.table(table, file = "CvW_result_DE.txt", col.names = T, row.names +

 = T, sep = "\t")

The preceding approach allows you to execute commands one at a time.

What if you want to execute all commands in one run without typing in each

command in the command line successively? Fortunately, we can do this by

using Rscript.

Put the following commands in an Rscript command file:

$ nano CvW_DE_script

#alternatively, you can use vi, instead of nano

#the content of the script should be:

library(baySeq)

if(require("parallel")) cl <- makeCluster(2) else cl <- NULL

df <- read.csv("WvC_ReadCount2Final.csv", header=TRUE)

replicates <- c("C", "C","C", "W","W","W")

groups <- list(NDE=c(1,1,1,1,1,1), DE = c(1,1,1,2,2,2))

CD <- new("countData", data = as.matrix(df[,2:7]), replicates = replicates,

+ groups = groups)

CD@annotation <- data.frame(name = df[1])

CD1 <- CD[rowSums(CD@data)>6,]

libsizes(CD1) <- getLibsizes(CD1)

CD1 <- getPriors.NB(CD1, cl = cl)

CD1 <- getLikelihoods(CD1, cl = cl)

table = topCounts(CD1, group="DE", number=nrow(df), normaliseData=TRUE)

write.table(table, file = "CvW_result_DE.txt", col.names = T,

+ row.names = T, sep = "\t")

#end

Check if you
have the right

parameter

8

#save your script using Control + O

#exit using Control + X

Create a bash file which runs the script using Rscript and an email message

that tells you that the script is done

$ nano bash_Rscript.sh

#Rscript contains the file name of your script above

#Optionally, provide your email address so you will receive a message when

analysis is

#done

Rscript MBvNB_DE_script

mail -s "subject:bayseq" example@gmail.com <<< "content: run is finished"

#save your script using Control + O

#exit using Control + X

Now, change the bash script to 'executable'

$ chmod +x bash_Rscript.sh

Run the executable bash script

$ nohup ./bash_Rscript &

With ‘nohup’ you can shut down your machine, have a break, check your FB

account and wait until the analysis is done. You should receive an email

message telling you that the "run is finished".

Downstream analysis

Manipulating output

1. Computing for Expression Ratio, fold change or Log2FC.

2. Identify repressed and induced genes.

Create a Heatmap to visualise changes in gene expression.

9

Note: Reference materials used in this program are attributed to the

original authors.

Sequencing reads in this exercise are used with permission.

Because the read files are proprietary (owned by the National Institute

of Agricultural Botany - Cambridge), kindly erase them including

intermediate files generated if no longer in use. This will be made

publicly available on a database (e.g. NCBI-SRA).

Thank you and we hope you enjoyed the exercise.

Don’t hesitate to ask any questions and feel free to contact us any time

(email address: nelzo.ereful@niab.com).

mailto:nelzo.ereful@niab.com

